Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
PLoS One ; 19(4): e0298139, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38564528

RESUMO

Bacterial communities directly influence ecological processes in the ocean, and depth has a major influence due to the changeover in primary energy sources between the sunlit photic zone and dark ocean. Here, we examine the abundance and diversity of bacteria in Monterey Bay depth profiles collected from the surface to just above the sediments (e.g., 2000 m). Bacterial abundance in these Pacific Ocean samples decreased by >1 order of magnitude, from 1.22 ±0.69 ×106 cells ml-1 in the variable photic zone to 1.44 ± 0.25 ×105 and 6.71 ± 1.23 ×104 cells ml-1 in the mesopelagic and bathypelagic, respectively. V1-V2 16S rRNA gene profiling showed diversity increased sharply between the photic and mesopelagic zones. Weighted Gene Correlation Network Analysis clustered co-occurring bacterial amplicon sequence variants (ASVs) into seven subnetwork modules, of which five strongly correlated with depth-related factors. Within surface-associated modules there was a clear distinction between a 'copiotrophic' module, correlating with chlorophyll and dominated by e.g., Flavobacteriales and Rhodobacteraceae, and an 'oligotrophic' module dominated by diverse Oceanospirillales (such as uncultured JL-ETNP-Y6, SAR86) and Pelagibacterales. Phylogenetic reconstructions of Pelagibacterales and SAR324 using full-length 16S rRNA gene data revealed several additional subclades, expanding known microdiversity within these abundant lineages, including new Pelagibacterales subclades Ia.B, Id, and IIc, which comprised 4-10% of amplicons depending on the subclade and depth zone. SAR324 and Oceanospirillales dominated in the mesopelagic, with SAR324 clade II exhibiting its highest relative abundances (17±4%) in the lower mesopelagic (300-750 m). The two newly-identified SAR324 clades showed highest relative abundances in the photic zone (clade III), while clade IV was extremely low in relative abundance, but present across dark ocean depths. Hierarchical clustering placed microbial communities from 900 m samples with those from the bathypelagic, where Marinimicrobia was distinctively relatively abundant. The patterns resolved herein, through high resolution and statistical replication, establish baselines for marine bacterial abundance and taxonomic distributions across the Monterey Bay water column, against which future change can be assessed.


Assuntos
Alphaproteobacteria , Gammaproteobacteria , Água , RNA Ribossômico 16S/genética , Filogenia , Bactérias/genética , Oceanos e Mares , Alphaproteobacteria/genética , Gammaproteobacteria/genética , Água do Mar/microbiologia
2.
Environ Microbiol ; 26(3): e16605, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38517690

RESUMO

The Bay of Bengal (BoB) spans >2.2 million km2 in the northeastern Indian Ocean and is bordered by dense populations that depend upon its resources. Over recent decades, a shift from larger phytoplankton to picoplankton has been reported, yet the abundance, activity, and composition of primary producer communities are not well-characterized. We analysed the BoB regions during the summer monsoon. Prochlorococcus ranged up to 3.14 × 105 cells mL-1 in the surface mixed layer, averaging 1.74 ± 0.46 × 105 in the upper 10 m and consistently higher than Synechococcus and eukaryotic phytoplankton. V1-V2 rRNA gene amplicon analyses showed the High Light II (HLII) ecotype formed 98 ± 1% of Prochlorococcus amplicons in surface waters, comprising six oligotypes, with the dominant oligotype accounting for 65 ± 4% of HLII. Diel sampling of a coherent water mass demonstrated evening onset of cell division and rapid Prochlorococcus growth between 1.5 and 3.1 div day-1, based on cell cycle analysis, as confirmed by abundance-based estimates of 2.1 div day-1. Accumulation of Prochlorococcus produced by ultradian growth was restricted by high loss rates. Alongside prior Arabian Sea and tropical Atlantic rates, our results indicate Prochlorococcus growth rates should be reevaluated with greater attention to latitudinal zones and influences on contributions to global primary production.


Assuntos
Prochlorococcus , Synechococcus , Água do Mar , Prochlorococcus/metabolismo , Ecótipo , Baías , Synechococcus/genética , Fitoplâncton/genética
3.
Proc Natl Acad Sci U S A ; 121(10): e2304613121, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38408243

RESUMO

Marine particulate organic carbon (POC) contributes to carbon export, food webs, and sediments, but uncertainties remain in its origins. Globally, variations in stable carbon isotope ratios (δ13C values) of POC between the upper and lower euphotic zones (LEZ) indicate either varying aspects of photosynthetic communities or degradative alteration of POC. During summertime in the subtropical north Atlantic Ocean, we find that δ13C values of the photosynthetic product phytol decreased by 6.3‰ and photosynthetic carbon isotope fractionation (εp) increased by 5.6‰ between the surface and the LEZ-variation as large as that found in the geologic record during major carbon cycle perturbations, but here reflecting vertical variation in δ13C values of photosynthetic communities. We find that simultaneous variations in light intensity and phytoplankton community composition over depth may be important factors not fully accounted for in common models of photosynthetic carbon isotope fractionation. Using additional isotopic and cell count data, we estimate that photosynthetic and non-photosynthetic material (heterotrophs or detritus) contribute relatively constant proportions of POC throughout the euphotic zone but are isotopically more distinct in the LEZ. As a result, the large vertical differences in εp result in significant, but smaller, differences in the δ13C values of total POC across the same depths (2.7‰). Vertical structuring of photosynthetic communities and export potential from the LEZ may vary across current and past ocean ecosystems; thus, LEZ photosynthesis may influence the exported and/or sedimentary δ13C values of both phytol and total organic carbon and affect interpretations of εp over geologic time.


Assuntos
Carbono , Ecossistema , Isótopos de Carbono/análise , Fotossíntese , Fitol , Oceanos e Mares
4.
Environ Microbiol ; 25(11): 2118-2141, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37311449

RESUMO

The Bay of Bengal (BoB) is a 2,600,000 km2 expanse in the Indian Ocean upon which many humans rely. However, the primary producers underpinning food chains here remain poorly characterized. We examined phytoplankton abundance and diversity along strong BoB latitudinal and vertical salinity gradients-which have low temperature variation (27-29°C) between the surface and subsurface chlorophyll maximum (SCM). In surface waters, Prochlorococcus averaged 11.7 ± 4.4 × 104 cells ml-1 , predominantly HLII, whereas LLII and 'rare' ecotypes, HLVI and LLVII, dominated in the SCM. Synechococcus averaged 8.4 ± 2.3 × 104 cells ml-1 in the surface, declined rapidly with depth, and population structure of dominant Clade II differed between surface and SCM; Clade X was notable at both depths. Across all sites, Ostreococcus Clade OII dominated SCM eukaryotes whereas communities differentiated strongly moving from Arabian Sea-influenced high salinity (southerly; prasinophytes) to freshwater-influenced low salinity (northerly; stramenopiles, specifically, diatoms, pelagophytes, and dictyochophytes, plus the prasinophyte Micromonas) surface waters. Eukaryotic phytoplankton peaked in the south (1.9 × 104 cells ml-1 , surface) where a novel Ostreococcus was revealed, named here Ostreococcus bengalensis. We expose dominance of a single picoeukaryote and hitherto 'rare' picocyanobacteria at depth in this complex ecosystem where studies suggest picoplankton are replacing larger phytoplankton due to climate change.


Assuntos
Clorófitas , Ecossistema , Humanos , Salinidade , Baías , Água do Mar/microbiologia , Fotossíntese , Fitoplâncton , Clorofila
5.
mSystems ; 7(5): e0152221, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-35972150

RESUMO

For the abundant marine Alphaproteobacterium Pelagibacter (SAR11), and other bacteria, phages are powerful forces of mortality. However, little is known about the most abundant Pelagiphages in nature, such as the widespread HTVC023P-type, which is currently represented by two cultured phages. Using viral metagenomic data sets and fluorescence-activated cell sorting, we recovered 80 complete, undescribed Podoviridae genomes that form 10 phylogenomically distinct clades (herein, named Clades I to X) related to the HTVC023P-type. These expanded the HTVC023P-type pan-genome by 15-fold and revealed 41 previously unknown auxiliary metabolic genes (AMGs) in this viral lineage. Numerous instances of partner-AMGs (colocated and involved in related functions) were observed, including partners in nucleotide metabolism, DNA hypermodification, and Curli biogenesis. The Type VIII secretion system (T8SS) responsible for Curli biogenesis was identified in nine genomes and expanded the repertoire of T8SS proteins reported thus far in viruses. Additionally, the identified T8SS gene cluster contained an iron-dependent regulator (FecR), as well as a histidine kinase and adenylate cyclase that can be implicated in T8SS function but are not within T8SS operons in bacteria. While T8SS are lacking in known Pelagibacter, they contribute to aggregation and biofilm formation in other bacteria. Phylogenetic reconstructions of partner-AMGs indicate derivation from cellular lineages with a more recent transfer between viral families. For example, homologs of all T8SS genes are present in syntenic regions of distant Myoviridae Pelagiphages, and they appear to have alphaproteobacterial origins with a later transfer between viral families. The results point to an unprecedented multipartner-AMG transfer between marine Myoviridae and Podoviridae. Together with the expansion of known metabolic functions, our studies provide new prospects for understanding the ecology and evolution of marine phages and their hosts. IMPORTANCE One of the most abundant and diverse marine bacterial groups is Pelagibacter. Phages have roles in shaping Pelagibacter ecology; however, several Pelagiphage lineages are represented by only a few genomes. This paucity of data from even the most widespread lineages has imposed limits on the understanding of the diversity of Pelagiphages and their impacts on hosts. Here, we report 80 complete genomes, assembled directly from environmental data, which are from undescribed Pelagiphages and render new insights into the manipulation of host metabolism during infection. Notably, the viruses have functionally related partner genes that appear to be transferred between distant viruses, including a suite that encode a secretion system which both brings a new functional capability to the host and is abundant in phages across the ocean. Together, these functions have important implications for phage evolution and for how Pelagiphage infection influences host biology in manners extending beyond canonical viral lysis and mortality.


Assuntos
Bacteriófagos , Podoviridae , Humanos , Filogenia , Genoma Viral , Bactérias/genética , Myoviridae/genética
6.
Annu Rev Plant Biol ; 73: 585-616, 2022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35259927

RESUMO

The colonization of land by plants generated opportunities for the rise of new heterotrophic life forms, including humankind. A unique event underpinned this massive change to earth ecosystems-the advent of eukaryotic green algae. Today, an abundant marine green algal group, the prasinophytes, alongside prasinodermophytes and nonmarine chlorophyte algae, is facilitating insights into plant developments. Genome-level data allow identification of conserved proteins and protein families with extensive modifications, losses, or gains and expansion patterns that connect to niche specialization and diversification. Here, we contextualize attributes according to Viridiplantae evolutionary relationships, starting with orthologous protein families, and then focusing on key elements with marked differentiation, resulting in patchy distributions across green algae and plants. We place attention on peptidoglycan biosynthesis, important for plastid division and walls; phytochrome photosensors that are master regulators in plants; and carbohydrate-active enzymes, essential to all manner of carbohydratebiotransformations. Together with advances in algal model systems, these areas are ripe for discovering molecular roles and innovations within and across plant and algal lineages.


Assuntos
Clorófitas , Viridiplantae , Clorófitas/genética , Clorófitas/metabolismo , Ecossistema , Evolução Molecular , Filogenia , Plantas/genética , Viridiplantae/genética
7.
NanoImpact ; 22: 100303, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-35559960

RESUMO

Carbon nanotubes (CNT) are promising nanomaterials in modern nanotechnology and their use in many different applications leads to an inevitable release into the aquatic environment. In this study, we quantified trophic transfer of weathered multi-walled carbon nanotubes (wMWCNT) from green algae to primary consumer Daphnia magna in a concentration of 100 µg L-1 using radioactive labeling of the carbon backbone (14C-wMWCNT). Trophic transfer of wMWCNT was compared to the uptake by daphnids exposed to nanomaterials in the water phase without algae. Due to the rather long observed CNT sedimentation times (DT) from the water phase (DT50: 3.9 days (d), DT90: 12.8 d) wMWCNT interact with aquatic organisms and associated to the green algae Chlamydomonas reinhardtii and Raphidocelis subcapitata. After the exposition of algae, the nanotubes accumulated to a maximum of 1.6 ± 0.4 µg 14C-wMWCNT mg-1 dry weight-1 (dw-1) and 0.7 ± 0.3 µg 14C-wMWCNT mg-1 dw-1 after 24 h and 48 h, respectively. To study trophic transfer, R. subcapitata was loaded with 14C-wMWCNT and subsequently fed to D. magna. A maximum body burden of 0.07 ± 0.01 µg 14C-wMWCNT mg-1 dw-1 and 7.1 ± 1.5 µg 14C-wMWCNT mg-1 dw-1 for D. magna after trophic transfer and waterborne exposure was measured, respectively, indicating no CNT accumulation after short-term exposure via trophic transfer. Additionally, the animals eliminated nanomaterials from their guts, while feeding algae facilitated their excretion. Further, accumulation of 14C-wMWCNT in a growing population of D. magna revealed a maximum uptake of 0.7 ± 0.2 µg mg-1 dw-1. Therefore, the calculated bioaccumulation factor (BAF) after 28 d of 6700 ± 2900 L kg-1 is above the limit that indicates a chemical is bioaccumulative in the European Union Regulation REACH. Although wMWCNT did not bioaccumulate in neonate D. magna after trophic transfer, wMWCNT enriched in a 28 d growing D. magna population regardless of daily feeding, which increases the risk of CNT accumulation along the aquatic food chain.


Assuntos
Clorófitas , Cladóceros , Nanotubos de Carbono , Poluentes Químicos da Água , Animais , Daphnia/fisiologia , Nanotubos de Carbono/toxicidade , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...